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Abstract— Electrification can help to reduce the carbon
footprint of aviation. The transition away from the jet
fuel-powered conventional airplane towards battery-powered
electrified aircraft will impose extra charging requirements on
airports. In this paper, we first quantify the increase in energy
demands at several airports across the United States (US),
when commercial airline carriers partially deploy hybrid electric
aircraft (HEA). We then illustrate that smart charging and minor
modifications to flight schedules can substantially reduce peak
power demands, and in turn the needs for grid infrastructure
upgrade. Motivated by our data analysis, we next formulate an
optimization problem for flight rescheduling that incorporates
HEA charging considerations. This problem jointly decides flight
schedules and charging profiles to manage airport congestion
and peak power demands. We further consider mechanisms via
which airlines and airports can negotiate HEA assignments using
said optimization problem. Finally, we illustrate the efficacy of
our formulation through a case study on the John F. Kennedy
International Airport.

Index Terms— Electrified aircraft, airport congestion manage-
ment, smart charging.

I. INTRODUCTION

COMMERCIAL aviation produced 915 million tonnes
of CO2 worldwide in 2019, responsible for 2% of all

human-induced CO2 emissions from energy consumption,
as per [1]. The carbon footprint of aviation is projected to
increase with predicted annual growth of 4.2% in demand for
air travel over 2018-2038, according to [2], with temporary
reductions due to COVID-19, per [3]. The corresponding
increase in greenhouse gas emissions will pose a serious threat
to the vision of a carbon-neutral future. Electrification has been
identified as a potential path to reduce said emissions, e.g.,
by [4] and [5].

Electrified aircraft are an emergent technology, largely
enabled by the development efforts supported by NASA’s
Advanced Air Transport Technologies program in the United
States and similar programs by the respective agencies in
the European Union and Asia. Various aircraft configurations
such as turbo-electric, hybrid-electric and all-electric have
been proposed and analyzed. By hybrid electric configuration,
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we mean those airplanes which are propelled partly by electric
motor through a battery system and partly by gas turbines
through jet fuel. The benefits of a parallel hybrid propulsion
system for boosting power during takeoff and climb has been
demonstrated in [6] and [7]. Flight performance of parallel
turbofan systems has been analyzed in [8]. Small electric
airplanes for general aviation are already available. Flight
demonstrations are underway for the commuter class with
planes carrying <20 passengers. The next step is to electrify
regional airplanes that accommodate 30 - 100 passengers.
Various studies such as those in [9] and [10] predict that
commercial aviation will adopt electric aircraft over the next
few decades (in the 2030-2050 time-frame).

To handle the impending electrification of commercial avia-
tion, airports must invest in appropriate charging infrastructure,
as emphasized very recently in the World Economic Forum
[5]. Investment into building such infrastructure must be
forward-looking and account for plausible growth trajectories
of electrification technology. We first gauge the energy and
power needs of hybrid electric aircraft (HEA) at major airports
across the United States (US), accounting for the schedules of
various airlines at the airport. We only consider those HEA
configurations that are deemed to become viable over the
2030-2050 time frame, according to academic and industrial
research. Scheduling of flights at an airport is intimately
related to when and how much the electrified aircraft
operating these flights can be charged. As we demonstrate,
one substantially impacts the other. The main focus of this
paper is to show that fleeting decisions of airlines with
electric aircraft cannot be done independently of other airlines’
decisions, and are inextricably linked to their scheduling
decisions. The formulation and analysis of flight rescheduling
protocols must be solved across airlines that operate at an
airport whose capacitated grid infrastructure constrains HEA
charging. Towards this goal, we attempt to jointly optimize
flight arrivals/departures and decide the charging profiles of
HEA at an airport, aiming to minimize airport congestion
and peak electric power demands from HEA. To do so,
we tally the pros and cons of two possible mechanisms
for congestion management. The first mechanism allows a
central authority such as the airport to centrally solve the
rescheduling problem. In the second mechanism, we design
a negotiation strategy, where airlines propose schedules and
the airport runs the rescheduling problem as a feasibility
check, and the cycle continues till all parties agree. In this
paper, we restrict our congestion management interventions
to rescheduling protocols at airports at the strategic or
planning phase, which account for airport-wide constraints on
movements and charging. Similar questions can be studied
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for tactical or real-time operations; such investigations are
relegated to future work.

Not all flights can be operated using HEA. Energy densities
of today’s batteries are in the 200-250 Wh/kg range. They
are substantially smaller than that of jet fuel with densities
of ∼13,000 Wh/kg. As a result, the size and the weight of
a battery required on board limits the range of an HEA.
The battery size also depends on the extent the aircraft
relies on electric propulsion as opposed to jet fuel. With
plausible configurations of battery energy densities and degree
of hybridization, we compute the energy needs for operating
HEA on domestic flight paths within continental US in
Section II. By switching flights from current schedules that
can be operated by HEA, we estimate the increase in annual
energy needs at various US airports. Our estimates indicate
that accommodating HEA in commercial aviation will require
substantial upgrades to the grid infrastructure that powers these
airports. This estimation, albeit simplistic, motivates us to
examine the joint questions of flight scheduling and charging
at airports with HEA.

While flight distance, number of passengers and airplane
type largely dictate the energy needs for HEA, peak power
requirements from the grid on the other hand, depend on the
rate of charging. Grid components, such as transformers, must
be sized properly to support such peak rates. In Section III,
we show that refleeting by converting feasible aircraft to
HEA without modifying schedules, and charging such HEA
at constant power levels over their dwell times at airports,
can lead to substantial peak power demands. Thus, optimizing
charging schedules can significantly lower these peaks at
airports.

Flight arrival and departure schedules define the dwell times
of flights at airports. For HEA, these schedules put constraints
on when and how much an airplane can be charged. Thus, not
surprisingly, alterations in schedules of some flights can further
shrink peak power requirements over and above that obtained
from optimizing charging schedules alone. Our results in
Section III indeed align with this expectation. Charging
considerations alone cannot define flight schedules, however.
Airlines tailor their requests for flight arrivals and departures
to suit passenger demand patterns. As a result, busy airports
often witness congestion during peak hours. Congestion leads
to flight delays at these airports. Such delays for multi-hop
flight paths tend to cascade across airports. Flight rescheduling
for congestion management has been widely studied, e.g.,
see [11] for a survey. Airports in the European Union and
level 3 airports in the US (e.g., John F. Kennedy International
Airport (JFK), LaGuardia Airport (LGA), and Ronald Reagan
Washington National Airport (DCA)) adopt such mechanisms
for congestion management, according to [12]. Along the
same lines, we formulate a flight rescheduling problem at an
airport that accounts for charging considerations of HEA in
Section IV. Specifically, we design an optimization model that
seeks to jointly minimize the displacements of flights from
their requested schedules by airlines and flatten the power
profile required to charge the HEA aircraft operating these
schedules.

Many American airports today do not impose congestion
management protocols. This suggests that one can operate
airports without such protocols, albeit with increased and
frequent travel delays. The introduction of HEA into airline

fleet will likely change that paradigm. Installed capacities of
charging infrastructure at airports impose hard constraints on
charging decisions. In general, one cannot frequently exceed
grid equipment limitations, without seriously damaging said
equipment. We emphasize that this limitation does not arise
solely due to the lack of energy availability. Rather, the
installed sizes of transformers and electric power lines for
the grid dictate the maximum rate at which energy can be
delivered. Thus, feasibility of charging schedules must be
checked across airlines at an airport. In Section IV, we propose
two congestion management techniques, building on the
rescheduling algorithm with HEA charging considerations.
In the first protocol, the airport centrally solves the flight
rescheduling and charging problem, and suggests which flight
paths should switch HEA with conventional aircraft to ensure
acceptable schedule adjustments. In the other, an iterative
process ensues, where the airport runs the rescheduling
algorithm, but asks each airline to submit a revised schedule,
and the process continues till schedule readjustments are
acceptable to the airlines and are operationally feasible at the
airport. We remark that these are only two among possible
mechanisms for readjustment of schedules with HEA. A more
detailed analysis must account for possible re-submissions
of scheduling requests from airlines and reassignments of
flight paths between HEA and conventional aircraft, with
possible dynamic reassignments for tactical operations; and
consideration of inter-airline equity and other multiple criteria.
We leave such investigations for future endeavors.

We run a representative case study of the joint rescheduling
and charging algorithm with HEA charging for the John
F. Kennedy International Airport (JFK) in Section V. Our
experiments reveal the importance of jointly considering flight
rescheduling and smart HEA charging with reasonable HEA
adoption via refleeting. In particular, we solve the flight
rescheduling problem without HEA charging considerations
and then construct charging profiles for HEA under a constant
power charging scheme. Such a construction results in a high
peak power demand of 35.9 MW. Enforcing a limit of 20 MW
on power drawn for charging, our optimization problem returns
a solution that reduces that peak to 14.6 MW with a different
flight schedule. Using our simulation framework, we also study
how declared capacities at the airport and charging constraints
on airplane batteries impact both flight schedules and charging
profiles. By declared capacity, we mean the quantified measure
of the ability of an airport to support a certain number of flight
movements within a time duration, that may reflect capacities
of runways, terminals/gates, ground-crew, etc. The results
illustrate that airport congestion and charging considerations
are inter-dependent and cannot be tackled separately. We
finally compare the two congestion management protocols.
Our results illustrate that more flight paths operate HEA
when the airport suggests which HEA route should switch
to conventional aircraft, rather than when airlines themselves
revise their proposed routes operated by HEA and iterate with
airport’s feasibility check. In other words, given the coupling
between charging and scheduling considerations, centralized
joint airport and grid congestion management might play a
key role in HEA operation–and over the long run–adoption.

We draw on two lines of relevant work–one that
characterizes the capabilities and impacts of electric airplanes,
and the other that studies flight rescheduling and de-peaking
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TABLE I
SUMMARY OF REGIONAL AND SINGLE-AISLE HYBRID ELECTRIC

AIRCRAFT CONCEPTS AND RESEARCH. BSED STANDS
FOR BATTERY SPECIFIC ENERGY DENSITY

algorithms. In the first line of research, the most relevant
works are those of [10] and [13] that quantify the capabilities
of HEA concepts. We focus on retrofitted regional and
single-aisle HEA configurations in Table I that academic and
industry research deem viable over the next few decades.
Leveraging the technology growth scenarios envisioned in
these works, we examine the impacts of HEA adoption on
airport operations, and provide a granular view of the impact
of HEA on electric power demands, not just at a global scale as
done in [9], but at the level of airports. In the second category,
there is a growing literature on flight scheduling at capacity-
constrained airports. See [11], [19], [20], [21], [22], [23], [24],
[25], and [26] among others. These papers optimize flight
schedules to limit congestion during peak hours at airports
to avoid flight delays, the total cost of which in the US has
been estimated to be $33 billion by the [27]. We build on
these models to jointly optimize schedules of all flights and
the charging profiles of HEA at capacity-constrained airports.
Indeed, our case study on JFK airport indicates how one cannot
disentangle these two problems once HEA are introduced into
airlines’ schedules. In a sense, we introduce a widely studied
question for electrified ground vehicles to the domain of
electrified aviation–smart charging for peak demand reduction.
Benefits of said reduction are well-studied, e.g., in [28], [29],
[30], and [31], that include deferring infrastructure upgrades of
electric power distribution/transmission networks and avoiding
peak demand charges. Given the scale of HEA energy and
power needs, we believe that smart charging of HEA will
become similarly important, and alleviate burdens on airport
infrastructure growth, as outlined in [5].

II. ESTIMATING ENERGY REQUIREMENTS OF HEA

Energy needs of operating a flight path or an aircraft route
with HEA will depend on the the type of aircraft being
electrified and the distances traveled. For flight paths, we focus
on short-haul domestic commercial flights that had a dwell
time longer than 15 minutes at the originating airport in 2018.
We use flight information from the airline on-time performance
data from the [32]. The range of an HEA is limited by the size
and weight of the battery on-board. Battery technology for
electric airplanes is constantly improving. These batteries are
characterized by two parameters—its battery specific energy
density (BSED) and its motor factor (MF). BSED, measured
in Wh/kg, dictates the weight of the battery required to deliver
a given amount of electrical energy. And, MF defines the ratio
of the peak power that can be delivered by the battery and that
required by the aircraft. For a specific BSED-MF combination,
we utilize the range capabilities of retrofit hybrid electric

TABLE II
POWER REQUIREMENTS OF AIRCRAFT N178SY

FOR FLIGHT FROM SFO TO SLC

regional jets and narrow body aircraft from [10], reproduced
in Appendix Table V. A specific flight can utilize HEA only
if the flight distance is within this range.

We now formally describe the electrical energy requirement
of operating an aircraft’s route or path with HEA. Assume that
each HEA arrives at an airport with a depleted battery and
needs to be charged up to the level required for its next flight.
The required energy is calculated as E = p × d × b0, where
d describes the next flight distance in miles, p is the number
of passengers and b0 denotes the battery energy usage per
passenger-mile.1 This calculation assumes that the electrical
power drawn from the battery remains roughly constant
during different phases of the flight, e.g. taxi, take-off and
landing. For each flight in the database from the [32], we use
the tail number to identify the aircraft type from airplane
manufacturer’s websites; which in turn, yields the total number
of seats on the plane. Throughout this analysis, we uniformly
assume that 85% of all seats are filled in each flight to estimate
p. This load factor matches the yearly average estimates of
the same in the industry, based on the [33]. The values of
parameter b0 for HEA are adopted from [10], reproduced in
Table IV in the Appendix, assuming a battery-pack voltage
of 128V. Sizing of such batteries accounts for battery energy
consumed during taxi, takeoff, cruise, approach, and landing.
For regional jets, we use b0 for ERJ-175 and for single-aisle
aircraft, we use that for Boeing 737-700.

To illustrate the calculations through an example, consider
a single hybrid electric retrofit of Embraer ERJ 170-200
aircraft with tail number N178SY. On 05/29/2018, this
aircraft operated a 599-mile flight from SFO (San Francisco
International Airport, CA) to SLC (Salt Lake City, UT).
N178SY arrived at SFO at 17:02 pm and left for SLC at
17:53 pm. For different MF and BSED configurations, Table II
records E . For this example, a BSED of 500 Wh/kg and MF of
25% does not have the range ability to cover 599 miles. As a
result, with this BSED-MF combination, N178SY cannot be
operated with HEA.

A. Annual Energy Requirements at US Airports

The energy demands for individual flights under BSED-MF
combinations prove useful in later sections to both analyze and
design charging schedules for HEA. In this study, we consider
BSED and MF values that are deemed feasible in the 2030-
2050 time-frame, according to [4], [14], [15], [16], [17],
and [18]. Here, we utilize our calculations to estimate the
increase in annual energy demands at major US airports with
plausible growth trajectories of HEA technology, with flight

1The energy use per passenger mile gives a first-order estimate of energy
required for aircraft of different sizes (within a reasonable range) with close-
to-average occupancy rates.
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Fig. 1. Extra annual electricity demand that results from charging commercial passenger domestic HEA at airports across US under various BSED-MF
combinations2.

schedules from the BTS dataset for 2018. For a given BSED-
MF, we deem a flight feasible to be switched to HEA if its
flight distance is within the range of its retrofitted hybrid
electric variant. This step defines the maximum size of the
domestic fleet that gets electrified. See for the total number
of flights that can be operated as HEA under various BSED-
MF combinations at the major US airports. We remark that
our estimates are premised upon simplified assumptions of
HEA operations and their energy requirements as discussed
above, and operating parameters of HEA concepts from [10].
Despite being simplistic, our analysis provides an airport-level
granular view into energy/power requirements than global
estimates in [9] obtained with a single electric airplane concept
adopted from [13]. We view this endeavor as an important
step to motivate our investigation in the next section of jointly
optimizing scheduling and charging decisions.

Figure 1 plots the projected increase in aggregate annual
electricity demands at six large airports in the United
States–Hartsfield-Jackson Atlanta International Airport (ATL),
Chicago O’Hare International Airport (ORD), Dallas/Fort
Worth International Airport (DFW), Dulles International
Airport near Washington D.C. (IAD) and San Francisco
International Airport (SFO). The plots reveal that even
moderate BSED and MF values for HEA will lead to a
substantial annual battery energy consumption. To illustrate
the magnitude of that increase, notice that aggregate energy
demand of SFO in 2018 was 311 GWh, according to
the DataSanFrancisco program. Figure 12d confirms that
electrification at SFO with any BSED-MF combination
will substantially amplify said demand of 311 GWh. The
phenomenon is similar for other airports. For example,
ORD had an annual total energy demand of 441 GWh
in 2002 according to the O’Hare Modernization Final
Environmental Impact Statement. The projected increase in

2For BSED ≤700 Wh/kg, MF ≥50% is impractical for any flight distance.

Fig. 2. Frequency of flight distances for regional jets and single aisle aircraft
flying out of ORD in 2018.

ORD will more than double that requirement even at BSED
= 700 Wh/kg and MF = 25%. For the purposes of this
initial analysis, we ignore the possibility that an HEA may
need to charge enough to complete a round-trip journey from
and to that airport if the destination airport lacks necessary
charging infrastructure. Accounting for such possibilities will
only increase our demand estimates.

For a given MF, one might expect total energy consumption
from batteries on HEA to decrease with BSED, because
one requires lighter batteries to deliver the same amount of
power. However, that is not always the trend in Figure 1.
To explain this apparent paradox, we plot the histograms
of flight distances in Figure 2 served by regional jets and
single aisle aircraft at ORD in 2018. Notice that the distance
distribution of single-aisle aircraft is more right-skewed than
that of regional jets. Higher BSED values allow larger travel
distances. As a result, more single-aisle aircraft, traveling
longer distances with higher energy needs, are converted
to hybrid. Consequently, energy needs of HEA increase.
In Figure 3, we illustrate this further by breaking down
the energy requirement into two components. We begin by
considering the set of flights operated via HEA at BSED =
500 Wh/kg and MF = 25%. The black line measures the energy
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Fig. 3. Breakdown of the energy requirement as BSED increases. The
baseline captures the energy requirements from the same set of flight paths
that operate an HEA at BSED of 500 Wh/kg, but calculated at other values
of BSED. The total energy draw measures the aggregate energy requirement
from the aforementioned flight paths and others that become viable at higher
BSED values.

requirements of the same flight paths as BSED varies between
500 Wh/kg and 1500 Wh/kg with the same MF. Thanks to
improvements in battery technology at higher BSED values,
less electric energy is required to operate the same flight
trips, reducing the baseline energy requirements that define
the first component. However, the total energy requirements
(plotted in red) increases as higher BSED values allow larger
travel distances, making way for more long-distance flights
with higher energy needs served by HEA. The longer travel
distances contribute to the second component of the energy
requirement, which increases faster than the reduction in the
first component with BSED.

III. PEAK POWER REQUIREMENTS
AND PEAK SHAVING MECHANISMS

Grid infrastructure to deliver power at airports must be
designed to cover daily peak power demands from HEA and
the rest of the airport. In this section, we study the peak power
requirements for HEA charging at various airports.

Consider a naive charging scheme, where the energy
requirement of HEA is delivered uniformly at constant power
over its dwell-time at the airport. This power, summed across
all airplanes at each time yields the power requirement of
HEA at the airport. In Figure 4, we plot the histograms of
daily peak powers from HEA charging at SFO using the BTS
dataset for 2018 under different BSED settings with MF =
12.5%. With BSED of 500, 700 and 1000 Wh/kg, we obtain
median peak power demands of 25.8, 33.7 and 54.7 MW,
respectively. The daily maxima are even higher, e.g., with
BSED of 1000 Wh/kg, the highest daily peak is ∼82 MW.
These demands are substantial, given that the average power
demand of SFO in 2018 was 35 MW, according to the
DataSanFrancisco program. Supporting grid infrastructure at
the airports, including transformers and distribution lines, must
be sized to handle the power requirements of HEA. Peak
powers from naive charging will pose steep requirements on
the grid infrastructure. Even if transformers are properly sized,
large peak demands typically increase power procurement
costs manifold. This nonlinearity in the growth of procurement
costs with peak demand arises due to the fact that generators
committed to supply these infrequent peaks have much
higher production costs than those used to supply base load.
Smart coordinated charging among HEA can shave daily
peaks.

Fig. 4. Histogram of daily peak demands with different BSED (in Wh/kg)
and MFs (in %) at SFO with flight schedule data from 2018.

A. Shaving Peak Power Demands
We now illustrate the potential of smart charging at airports

to reduce daily peak power demands at airports. Assume for
this subsection that flight schedules remain the same, that
is, the arrival and the departure times for each flight are
the same as those in the [32] database. Divide the day into
T = 1440 one-minute intervals. We consider the charging
of HEA fleet F , indexed by n. For aircraft n, let t A

n and
t D
n , respectively, denote its arrival and departure times at the

airport gate. Define En as its total energy needs for the next
flight leg. With γ t

n denoting the charging rate (power) drawn by
HEA n in period t , we formulate the smart charging problem
as

minimize
T −1∑
t=0

(∑
n∈F

γ t
n

)2

,

subject to
T −1∑
t=0

γ t
n1t = En, γ t

n = 0 for t /∈
[
t A
n , t D

n

]
,

0 ≤ γn ≤ Qn, n ∈ F , (1)

over γ t
n for n ∈ F and t = 0, . . . , T − 1. Here, 1t equals

1 minute, the length of the interval. The first constraint
enforces HEA n to fulfill its charging obligations over its
dwell-time. The second constraint imposes restrictions on
charging rates allowed by the airplane battery and the power
electronics. Charging power of a battery is often measured
in terms of its C-rate. A power capacity of 1C for a specific
battery implies that it requires one hour to fully charge it up to
its capacity. A number xC indicates a power capacity x times
that of 1C. We encode a 10C limit in Qn for each flight, given
that higher C-rates are deemed unrealistic (per [34]), treating
the next flight’s energy requirement as the battery capacity.3
A quadratic function is strictly convex, minimization of which
seeks to reduce the aggregate charging rate at each time and
its variance across time, within constraints. One can utilize
other increasing strictly convex penalization to enforce the
same. Our formulation with the quadratic penalty is inspired
by valley-filling algorithms in ground electric vehicle charging
problems as in [35].

Table III records the results from six airports for the days
with the highest daily peaks from HEA charging under the
naive uniform charging scheme using MF=25%, BSED=700

3The energy requirement of a flight is upper bounded by the battery
capacity. Encoding a C-rate constraint in Qn using that capacity ensures that
our charging schedule always respects the physical charging rate constraints.
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TABLE III
HIGHEST DAILY PEAK POWER DEMAND IN SEVERAL

AIRPORTS WITH NAIVE AND SMART CHARGING

Fig. 5. Charging profiles with naive uniform charging rate ( ), smart
charging ( ), and smart charging with marginally altered flight schedules
( ) at IAD on Dec 6, 2018.

Wh/kg. The optimization is solved in Python with a Gurobi
solver. The results illustrate that daily peaks can substantially
reduce through smart charging.

Marginal alterations in flight schedules can further shave
peak power demands. Even a latitude of 30-minutes in the
flight departure times of a few flights can reduce daily peaks.
For example, the highest daily peak of 55.1 MW for IAD under
uniform charging reduces to 27.1 MW under smart charging;
even manual marginal flight schedule alteration reduces it
further to 22.9 MW. That is, manually altering the schedules
of a few flights within 30 minutes yielded a reduction in peak
power from 27.1 MW to 22.9 MW. Figure 5 plots the charging
profiles under the three schemes.

IV. CONGESTION MANAGEMENT WITH HEA
Our preliminary experiments in the previous section reveal

that charging of HEA and scheduling of aircraft must
account for the burdens of grid infrastructure upgrades
required to support HEA. In this section, we study congestion
management protocols with HEA. We begin in Section IV-
A by presenting a flight rescheduling problem that jointly
minimizes alterations to schedules submitted by the airlines
and charging profiles of HEA to abide by airport operational
constraints and charging capacity considerations. Then in
Section IV-B, we discuss mechanisms for airport congestion
control, where airlines propose schedules that include HEA
aircraft routes, and airports utilize the flight rescheduling
and charging algorithm to check for feasibility and suggest
altered schedules. If the output schedule differs too much
from an airline’s proposed schedule, the airline must update
its proposal, based on business needs and operational
considerations across multiple airports. One can consider
a variety of update mechanisms; we focus on two that
allow airlines to alter their aircraft routes operated by HEA
to conventional aircraft. Altering the usual minimization of
displacements of output schedules from requested schedules

of flights to respect declared capacities at an airport,
we tackle charging considerations of HEA within airline fleets.
Specifically, we build on [19] and [26] among others, and
extend with HEA charging constraints.

A. Flight Rescheduling With Smart HEA Charging Algorithm
Consider the rescheduling and charging problem over T

intervals, denoted 0, . . . , T − 1. Let S describe the flight
scheduling requests (both arrivals and departures) within this
horizon; each request is for departure or arrival of a flight in
one among T time intervals. Encode the request in

At
i :=

{
1, if request i must be fulfilled at/after period t,
0, otherwise

(2)

for t = 0, . . . , T − 1 and i ∈ S. The binary sequence(
A0

i , . . . , AT −1
i

)
assumes the form (1, . . . , 1, 0, . . . , 0), where

the position of the last one indicates the time interval to
execute request i . Akin to At

i , define Y t
i for i ∈ S and

t = 0, . . . , T − 1 that encodes the allocation decisions instead
of requests. That is,

Y t
i :=

{
1, if allocation i is fulfilled at/after period t,
0, otherwise

(3)

for t = 0, . . . , T − 1 and i ∈ S. For meaningful allocations,
we must have

Y t
i ≥ Y t+1

i , Y 1
i = 1, Y t

i ∈ {0, 1} (4)

for all i ∈ S and t = 0, . . . , T − 1. These constraints
imply that

(
Y 0

i , . . . , Y T −1
i

)
becomes a sequence of the

form (1, . . . , 1, 0, . . . , 0), where the position of the last one
describes the time interval allocated to request i .4 Declared
capacity of an airport is described by the number R of arrivals
and departures that an airport can handle within a horizon of
L time intervals. This number encodes operational constraints
that arise due to limited number of runways, gate management
schemes and available staff, among others. Thus, we impose
the constraint∑

i∈S

min{t+L ,T −1}∑
τ=t

(
Y τ

i − Y τ+1
i

)
≤ R (5)

for each t = 0, . . . , T − 1. In general, many airports consider
different capacities over different time horizons; we use a
representative R for simplicity.

Let C describe the set of pairs ( j, j ′) of requests from
S, where j is an arrival request and j ′ is the corresponding
departure request. Then, we impose a lower bound W j, j ′ on
connecting times for flights at the airport as

T −1∑
t=0

(
Y t

j ′ − Y t
j

)
≥ W j, j ′ (6)

4One can alternately formulate the problem with variables Ỹ t
i ∈ {0, 1}

that indicate whether allocation i is fulfilled exactly at period t . While a
formulation with such variables does not introduce conceptual difficulties,
the notation becomes more cumbersome; we circumvent that by adopting the
formulation in [25].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



HOU et al.: IMPACT OF AVIATION ELECTRIFICATION ON AIRPORTS: FLIGHT SCHEDULING AND CHARGING 7

for all ( j, j ′) ∈ C, given that the intervals t over which
Y t

j ′ = 1 and Y t
j = 0 are exactly those for which the airplane

is at the airport.
Let CH denote the subset of C with requests of HEA. For

( j, j ′) ∈ CH, let E j, j ′ denote the total energy demand for the
aircraft whose arrival/departure requests are indexed by j, j ′.
Let γ t

j, j ′ denote the charging rate during time interval t for the
battery of the aircraft that is identified by the requests j, j ′.
The energy needs of that aircraft is enforced via

T −1∑
t=0

(
Y t

j ′ − Y t
j

)
γ t

j, j ′1t = E j, j ′ , γ t
j, j ′ ≥ 0. (7)

Here, 1t is the length of each time interval and hence, γ t
j, j ′1t

is the energy delivered to a connecting airplane over time
interval t . Such a constraint is enforced for all ( j, j ′) ∈ CH.
In addition, we impose two sets of constraints on the power
delivered to the HEA. First, the aggregate power for charging
all HEA across the airport is constrained by P , the capacity
defined by the grid infrastructure at the airport, as∑

( j, j ′)∈CH

(
Y t

j ′ − Y t
j

)
γ t

j, j ′ ≤ P (8)

for each t = 0, . . . , T − 1. Second, we enforce that
charging rates for each individual battery does not exceed 10C.
Specifically, we impose an upper bound Q j, j ′ on the charging
rate of the form

γ t
j, j ′ ≤ Q j, j ′ (9)

for each ( j, j ′) ∈ CH and t = 0, . . . , T − 1. Similar to that
in (1), we use the energy requirement of the flight as a proxy
for the battery capacity to compute Q j, j ′ .

For a request i ∈ S, define its displacement as the
positive (respectively, negative) difference X+

i (respectively,
X−

i ) between the time interval allocated and the time interval
requested, i.e.,

X+

i :=

T −1∑
t=0

(
1 − At

i
)

Y t
i , X−

i :=

T −1∑
t=0

At
i
(
1 − Y t

i
)
. (10)

With this notation, we present the flight rescheduling and
charging problem as the following optimization problem.5

minimize
∑
i∈S

(
X+

i + X−

i
)
+ w0 max

i∈S
max

{
X+

i , X−

i
}

+ w

T −1∑
t=0

 ∑
( j, j ′)∈CH

γ t
j, j ′

2

,

subject to (4) for i ∈ S, t = 0, . . . , T − 1,

(5) for t = 0, . . . , T − 1,

(6) for ( j, j ′) ∈ C,
(7), (8) for ( j, j ′) ∈ CH,

(9) for ( j, j ′) ∈ CH, t = 0, . . . , T − 1,

(10) for i ∈ S (11)

5In the interest of concreteness, we design (11) with a specific objective
function. One can formulate the same with additional considerations for both
transportation and charging.

over the variables Y , γ and X . The objective function is
a weighted combination of three terms. The first term is
the maximum displacement. The second summand equals
the total displacement over all flights. The third summand
is a penalty that is designed in a way that minimizing
it favors flat aggregate charging profiles of HEA across
flights, similar in spirit to the smart charging problem
in (1). The positive constant w controls the trade-off between
minimizing displacements and peak-shaving in charging the
HEA. Assigning a low weight w amounts to prioritizing
the minimization of displacements of movement requests
at the expense of higher peak powers required to charge the
HEA. Note that while P in (8) imposes a hard constraint on
the total power drawn by HEA at the airport, the third term
in the objective function with w > 0 seeks to additionally
flatten the demand profile within these limits. P encodes
capacity constraints of the supporting grid infrastructure at
the airport. Operating within these limits, peak shaving is
crucial to minimize energy costs of airports. Sharp peaks in
power demands are typically met with expensive generators,
the added expense of which are levied on consumers through
peak demand charges. These charges are calculated based
on the maximum power usage, instead of the net energy
consumption, and are common elements of electric utility rate
structures across the US. Interaction between electric transit
buses and peak demand charges are recorded in [36]. Given
the magnitude of the peak charging power requirements of
airports due to HEA charging, electric peak demand charges
can be substantial for airports. Airlines paying for such charges
will likely pass these costs on to passengers, increasing travel
costs. Positive w can aid in flattening the power profile and
reducing the peak power below P .

The rescheduling and charging problem in (11) is a
mixed-integer optimization program with a convex quadratic
objective function and a mix of linear and bilinear constraints.
Notice that all bilinear forms in the constraints such as those
in (7) and (8) are products of two variables, one among which
is binary, and the other is a continuous variable. Constraints
that involve linear combinations of bilinear forms can be
replaced by equivalent linear constraints as follows. Consider
a bilinear term of the form αBαR , where αR ∈ [αR, αR]

and αB ∈ {0, 1}. Then, replace αBαR in the constraint
with another continuous variable α, and add the linear
constraints,

αRαB ≤ α ≤ αRαB,

αR(1 − αB) ≤ αR − α ≤ αR(1 − αB). (12)

Upon repeating this exercise with each bilinear form in
the constraint, we obtain a set of linear constraints that can
be shown to be equivalent to the original bilinear constraint.
Thus, products between binary and continuous variables in
such constraints can be handled equivalently as mixed-integer
linear constraints. With said reformulations, (11) can be solved
as a mixed-integer quadratic program. Popular solvers such as
Gurobi implement the above reformulation internally.6

6See https://www.gurobi.com/events/products-of-variables-in-mixed-
integer-programming/
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B. Alteration of Proposed Schedules Based on Outputs of
Rescheduling Algorithm

Consider the setting where multiple airlines propose their
schedules (including the refleeting of certain aircraft routes
with HEA), but the rescheduling and charging algorithm
used by the airport outputs a modified schedule that is
quite different from the proposed one. We assume that the
current schedules at the airports reflect airlines’ scheduling
preferences truthfully. Scheduling requests are made based
on customer demand, competitors’ schedules, and historical
performance data of said schedules, among other factors.
Consequently, airlines may find large modifications to
their proposed schedules unacceptable. Therefore, one needs
mechanisms for airlines to alter their proposed schedules and
iterate the process with the airport.

Formally, let A denote the set of airlines. For a ∈ A,
let Sa define the set of scheduling requests from airline a.
Further, let Ca define the set of pairs ( j, j ′) of requests from
Sa , where j is an arrival request and j ′ is the corresponding
departure request. Define the subset CH

a of Ca that contains the
requests from HEA. Consider the case where all airlines a ∈ A
have submitted their scheduling requests Sa to the airport.
Then, the airport runs the rescheduling and charging problem
in (11). If the maximum among the optimal displacements
X+

i and X−

i from (11) exceed a pre-set limit such as 10 or
15 minutes, some among the airlines may find it unacceptable
and must alter their proposed schedules and/or aircraft routes
operated via HEA. That is, each airline a must then resubmit
Sa and CH

a . for the airport to adjust the schedules. Also note
that in general literature, small schedule displacements of less
than 15 minutes have been assumed to not affect the airline’s
competitive position significantly relative to their competitors
[37], [38].

While each airline a should have the flexibility to resubmit
Sa and CH

a , in this paper, we consider a restricted re-
submission policy—each airline is asked to switch one HEA
operated flight path in their requested schedule to conventional
(reduce |CH

a | by one for each a), while the requested schedule
Sa is maintained the same. Some remarks about our considered
re-submission policy are in order. First, we acknowledge that
an airline’s inability to alter the proposed schedule is limiting;
however, this simple readjustment of HEA operated flight
paths is enough to illustrate the impact of HEA charging needs
on the output schedules from (11) in our experiments—the key
focus of this paper. Second, the reduction of the number of
HEA operated flight paths by one for each airline is motivated
to maintain equity across airlines. We acknowledge that in
the growing literature on tactical mechanisms for congestion
management, a myriad ways exist to be equitable amongst
airlines for rescheduling, e.g., by accounting for the number
of passengers affected, size of airlines, etc.; see [38] and
[39] for examples. Our policy choice is simple and again,
serves to illustrate the effect of HEA-related considerations
in the schedule readjustment process. Third, airline a must
consider a variety of factors in choosing which particular
HEA flight path should be switched to a conventional aircraft.
Such considerations include scheduling/charging constraints at
other airports, HEA-handling costs that can vary over time,
availability of different aircraft, etc. Again, we adopt a simple
approach and pick the flight path in CH

a that has the highest

uniform charging rate requirement. Such a choice is heuristic,
and is guided by the intuition that a connection whose next
flight on the route requires a high uniform charging rate over
the dwell time at the airport imposes heavy burdens on the
charging infrastructure, accommodating which likely causes
large displacements of flights. Thus, its removal will likely
reduce maximum displacements. This heuristic capitalizes on
the impact of HEA charging on displacements.

Overall, our readjustment of schedules proceeds as follows.
When the output schedule from (11) is deemed unacceptable
by an airline, they each offer to reduce the number of HEA-
operated flight paths by one, chosen based on ranking said
flight paths based on their uniform charging requirements.
Then, the airport reruns (11) with modified CH

a ’s, and the
process continues. The algorithm is visualized in Figure 6 on
the left. If the proposed schedules with all HEA switched to
conventional aircraft results in acceptable displacements for
all airlines, then this iterative procedure must converge.

The mechanism described above requires each airline to
resubmit a scheduling request. One might surmise that the
airport can itself reduce HEA-operated flight path requests
centrally. For the sake of comparison, we consider an
additional mechanism (see the right of Figure 6), where the
airport ranks all HEA-operated flight paths from the collection
of airlines and reduces that set by one, based on the path that
has the highest uniform charging rate across the airport. It then
re-solves (11) and this cycle continues, till the displacements
are deemed acceptable by the airlines.7 Again, if the proposed
schedules with all HEA switched to conventional aircraft yield
acceptable displacements for all airlines, then this cycle must
converge. We remark that such a centralized procedure for the
readjustment of schedules will take away the autonomy of the
airlines to choose their aircraft-type (and more generally, their
schedules), and hence, may prove challenging to implement.

We conclude this section with a remark about our
modeling choices to compute the rescheduling and charging
decisions. We recognize that our formulation in (11) and
the negotiation mechanisms in Figure 6 can be made much
more comprehensive, allowing for extensions to capture IATA
guidelines as in [25], airline equity and interests as in [38] and
[39], and connecting passenger flows as in [40]. While we aim
to pursue these directions in future research, our focus in this
paper is to illustrate the need for jointly modeling scheduling
and charging decisions associated with HEA refleeting, using
HEA concepts that are deemed viable in 2030-2050. Our case
study, presented next, is dedicated to this task.

V. CASE STUDY OF FLIGHT RESCHEDULING
DUE TO HEA FOR THE JFK AIRPORT

We now conduct a representative case study for domestic
flight operations at the JFK airport based on flight schedules
on December 27, 2018. Specifically, we utilize the schedules
of domestic flights from the BTS database for the JFK airport
as the requested movements over the peak hours of 10:00-
16:00, considering each time interval to be 2 minutes in
length. Per the BTS dataset, there were 215 movements during
this time window. We consider the actual movements as the

7One can include a constraint of the form max{X+

i , X−

i } ≤ X in (11)
to encode a hard constraint on maximum displacements that airlines might
tolerate.
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Fig. 6. Two heuristic mechanisms to alter HEA-operated connections.

Fig. 7. Requested and allocated movements per hour at JFK airport on
12/27/2018; allocation decisions are based on the benchmark experiment that
does not consider HEA charging.

scheduling requests. A more representative study requires data
of the actual scheduling requests from airlines for which our
use of the realized schedules only serve as a proxy. Among
the requesting aircraft, 32 of them with arriving /departure
request pairs can be switched to the hybrid electric option,
based on the selection criterion described in Section II with
BSED of 700 Wh/kg and MF of 25%–conservative parameter
choice for attainable BSED and mid-range of expected MF in
the 2030-2050 time-frame. According to [41], JFK supports
around 90 arrivals and departures per hour. For our first set
of experiments, we consider a capacity of R = 45 over
L = 30 slots for domestic flights, roughly allocating half
the total capacity at JFK to domestic flights, per the share
of domestic flights among all flights served at JFK (see [42]).
We encode a minimum connecting time of 30 minutes in W
for all aircraft.

First, we run the optimization problem in (11) without
accounting for charging considerations. That is, we drop the
constraints (7), (8) and (9) in (11) and set w = 0, w0 = 1.
In effect, we run an optimization problem only over the
displacement variables Y, X . The outcome of this experiment
serves as a benchmark to compare the subsequent results
with charging considerations. Figure 7 illustrates that the
resulting allocation decisions exhibit some displacements
from requested schedules. Such displacements are inevitable,

Fig. 8. Positive displacements8and charging profiles for three different
parameter sets: (1) Rescheduling decisions without charging constraint under
uniform charging (2) P = 20 MW, w = 0, Q ∼ 10C and (3) P = 20MW,
w = 1/P2, Q ∼ 10C. For all experiments, R is held constant at 45.

given that the peak hourly slot request exceeds our assumed
airport’s considered capacity of R = 45. With the resulting
rescheduling decisions, we construct a charging profile for
HEA that will result from a uniform charging rate over their
dwell times at the JFK airport. Charging HEA at a constant
power level over the resulting allocations then yields a peak
power demand of 35.9 MW.

Next, we consider an upper bound of P = 20 MW on the
total power drawn by HEA at the JFK airport. This capacity
is far less than the peak power of 35.9 MW obtained under a
uniform charging schedule added to the rescheduling problem
that ignores charging considerations. Encoding a realistic 10C
battery charging rate in Q’s, we run (11) with two different
choices of w. With w0 = 1, w = 0, we obtain a charging
profile whose peak power is 20.0 MW, that equals the airport’s
charging capacity. That is, even without explicitly seeking
to flatten the aggregate charging profile across HEA via the
objective, the optimization problem finds a slot allocation and
charging schedule that respects charging capacity limits at the
airport, enforced via (8). Even when the peak power respects
said limits, it is useful to flatten the charging profile and
reduce peak powers to avoid large peak demand charges. Upon
choosing w0 = 1, w = 1/P

2
, we obtain a charging profile

whose peak power is 14.6 MW, that is even less than that
obtained with w = 0. Thus, positive w aids in peak shaving.9
To see this, we keep w0 = 1 and reduce the value of w

to 1e−13, the resulting peak power rises to 20.0 MW. This
is due to the fact that we impose less stringent requirement

8By positive displacement, we mean non-zero X+

i + X−

i , i.e., we omit the
cases with no displacement and X+

i + X−

i = 0.
9In general, it can happen that peak power drawn with w = 0 and w >

0 become P , where positive w will flatten the resulting charging profile further
than with zero w, albeit with coinciding peaks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 9. Positive displacements and charging profiles with P = 20 MW,
w0 = 1, w = 1/P2, R = 45 and two different choices for battery charging
capacities: Q ∼ 10C and Q ∼ 5C.

on the peak shaving performance. The displacements from
these experiments are visualized in Figure 8a and the charging
profiles are plotted in Figure 8b. These figures demonstrate
that charging considerations impact not only the charging
schedules but they also affect the resulting flight schedules.
In the same vein, changing the upper bound on the battery
charging rate Q impacts both displacement decisions and
charging profiles. Figures 9a and 9b capture this sentiment
through an experiment with P = 20 MW, w0 = 1, w = 1/P

2
,

R = 45, where Q encodes two different battery charging limits
of 5C and 10C.

As one might expect, expanding the airport capacity R to
accommodate 50 flight movements instead of 45 movements
per hour should reduce the extent of rescheduling. Indeed,
aggregate displacements reduce non-linearly from 502 minutes
with R = 45 to 206 minutes with R = 50. Figure 10a confirms
that the overall distribution of displacements skews leftward
from this expanded runway capacity. This experiment utilizes
P = 20 MW, w = 1/P

2
, w0 = 1 and Q encodes a charging

rate upper bound of 10C. Change in runway capacity from
R = 45 to R = 50 not only alters the flight schedules, but it
also changes the resulting charging profiles (see Figure 10b).
The peak power changes from 14.6 to 16.0 MW. To explain
this increase, note that an expanded airport capacity allows
more arrivals and departures in each time interval. As the
throughput during peak hours increases, the aggregate power
demand from the HEA during these peak hours concomitantly
increases. This experiment illustrates that airport’s capacities
to handle transportation throughput not only impact flight
schedules but also significantly affect the charging profiles and
their peaks.

The above experiments demonstrate that constraints on
airport capacities as well as those imposed on HEA charging

Fig. 10. Positive displacements and charging profiles for two different airport
capacities (R = 45 and 50) with P = 20 MW, w0 = 1, w = 1/P2 and
Q ∼ 10C.

Fig. 11. Comparison of (a) the share of HEA-operated aircraft routes under
two different ways to switch such routes/paths to conventional aircraft and
(b) charging profiles.

affect both flight schedules and charging profiles with adoption
of HEA in commercial aviation. One cannot simply tackle
flight scheduling and HEA charging separately; these two
questions are inextricably linked. We remark that while we
only report the results from JFK, the framework is general
and can be applied to any airport.
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Finally, we consider the question of how proposed
schedules are altered when the outputs of (11) cause longer
displacements than what an airline deems acceptable (assume
the maximal acceptable displacement is 10 minutes in this
experiment for all airlines). To test the two mechanisms for
altering proposed schedules, we first generate a schedule by
running (11) with a declared capacity of R = 50, P = 14 MW,
Q ∼ 5C and w0 = 1, w = 1/P

2
. The solution features a peak

charging power of 13.8 MW with the maximal displacement
of 14 minutes.

Based on such modified schedule, we now consider the two
schemes as summarized in Figure 6 to switch HEA-operated
connections to conventional aircraft. In the first scheme,
each of the 8 airlines drops one HEA-operated connection,
by switching those HEA-operated routes to conventional air-
craft that require the maximum uniform charging rate among
their movements. As a result, their switches convert 8 HEA-
operated routes to conventional. After a single iteration, the
maximum displacement drops from 14 minutes to 8 minutes,
making the schedules acceptable to all airlines. In the second
mechanism, the airport chooses to switch the single flight
path with maximum uniform charging rate among all HEA-
operated connections to conventional. Our implementation
needs six iterations to reduce the maximum displacement
from 14 minutes to 10 minutes. Figure 11a portrays the
difference in the proportions of HEA-operated routes. While
we consider limited flexibility in the rescheduling process
(only allow airlines/airport to switch HEA-operated flight
paths to conventional), our result underscores the importance
of HEA operations in congestion management. Viewed
differently, details of congestion management will likely play
a vital role in HEA use.

We remark that the rescheduling and charging problem
in (11) is solved in Python with Gurobi [43] version
9.0.2 on a MacBook Pro with Apple M1 pro chip. While
the computational time varies (it generally takes longer to
solve the problem with tighter constraints), the longer run-
times clock around 950 seconds. Gurobi’s branch-and-bound
algorithm for mixed-integer quadratic programming produces
a certifiably globally optimal solution in each run.

VI. CONCLUSION AND FUTURE DIRECTIONS

HEA technology is maturing fast. They are projected to
become viable for commercial aviation over the next few
decades. While their overall energy needs at a national scale
had been estimated before, we took a much more nuanced
view of airport operations with HEA in this paper. Specifically,
we provided a framework to gauge the energy needs of
operating a specific aircraft’s route with plausible hybrid
electric options. This calculation allowed us to estimate the
substantial increase in energy demands at major US airports
with likely technology growth scenarios. Future technology
growth patterns are inherently uncertain, and as a result, our
projections of energy requirements bear the burden of that
uncertainty. Given the variety of possible technology growth
(BSED/MF combinations), our work provides an estimated
range of possible energy capacities required at airports for
HEA adoption. We showed through various examples that
one must carefully design the charging profile of HEA at
airports to reduce peak power demands. Smart management

TABLE IV
BATTERY ENERGY USAGE b0 IN WH PER PASSENGER-MILE

of HEA charging profiles and slight alterations of flight
schedules can help to significantly reduce peak power demands
at airports. Such reductions can lighten the burdens of required
grid infrastructure upgrades and allow airports to avoid peak
electric demand charges. Building on this observation, we then
proposed a flight rescheduling and charging algorithm that
seeks to both minimize displacements of requested movements
and flatten aggregate charging profiles. We illustrated our
proposed formulation through a case study for JFK airport.
The key insight from our analysis is that adoption of HEA
within airline fleets will require coordination between flight
scheduling and HEA charging. Scheduling and charging
cannot be solved separately. While one can choose not to
enforce flight rescheduling protocols at the cost of increased
delays; by constrast, constraints imposed by the charging
infrastructure cannot be frequently violated without seriously
damaging the infrastructure. And coordination of scheduling
and charging must be done across airlines. Our results
illustrate that the specifics of implementation, e.g., who
decides HEA-operated flight paths, can substantially alter HEA
usage, in turn affecting long-term HEA adoption by airline
carriers.

Our rescheduling algorithm with HEA charging is designed
for a single airport. Such a framework can be extended
in future work to jointly schedule flights and charge HEA
across several airports. That framework will allow us to
relax the requirement that each airport must fulfill the
charging needs of all its outgoing flights. Rather, one can
charge HEA at only a few airports that upgrade their grid
infrastructure. We do not anticipate conceptual difficulties
in formulating such a problem. However, solving such an
optimization problem at scale will invariably require careful
algorithm design, especially when solved over a long time
horizon such as 6 months. Note that our rescheduling and
charging algorithm is meant as a planning tool that solves
the problem prior to the date the flights are operated.
Real-time contingencies such as weather-related variations
in runway capacities, unexpected equipment malfunction and
crew shortages at airports inevitably require modifications of
such plans. We plan to enhance our model to include tactical
recourse decisions that adapt to said contingencies, possibly
optimizing charging decisions with access to local stochastic
solar power generation at an airport. In this paper, we have
not explicitly modeled the costs of HEA charging. In future
work, we aim to study the design of contracts among electric
utilities, airports and airlines to pay for powering HEA. Such a
study will allow us to estimate how HEA adoption will impact
flight ticket prices as such costs trickle down to passengers.
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TABLE V
MAXIMUM RANGE OF HEA IN MILES

TABLE VI
NUMBER OF FLIGHT PATHS FROM THE VARIOUS AIRPORTS IN 2018, THAT

WERE OPERATED BY A REGIONAL JET (RJ) OR SINGLE AISLE (SA)
AIRCRAFT IN THE BTS DATASET

Fig. 12. Number of flights that are switched to HEA under various BSED/MF
combinations.

APPENDIX

See Tables IV–VI and Fig. 12.
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