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Models of RNA Velocity
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Steady-state ratio of unspliced to spliced RNA: lé

Velocity: v = u —lé S.

Assumes a steady-state model.
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Full dynamical model:
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Treats each gene independently and
regulatory relationships are
ignored.
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Transcription factor-aware:
Yg(t) = agsin(wgt + bg) + By,

WD) _ 17, %, (1) ~ yovs).

* Assume a specific behavioral
form (sine function).

* Does not explicitly integrate
GRNes as transcription rate
controllers.
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Our Model for Network RNA Velocity T
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Goal: Study network RNA velocity and targeted drug interventions (in
collaboration with AbbVie).



Incremental Gain and the Sign of Regulation in GRNSs
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positive if Wgy > 0 (and thus Wg, = 0), and negative if Wgq > 0 (and thus W, = 0).



Existence of Steady States
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Spliced I =B9u(t) — y7s(1).

For a nonlinear system % = f(x), a point X, is a steady state if f(x,) = 0.

System is globally asymptotically stable if for every trajectory x(t), we have x(t) — x, as t - .

Theorem 1:

n ad
Suppose that B, > 0 and y, > 0 for all genes g. Let C = maxg ). qi . Wgq and § = max, e

The networked dynamics admits a steady state (u*, s*) if k = C&.



Stability — Single Gene Case

What does it mean for a system to be stable?
Suppose a system has a steady state (u”, s™). If you slightly perturb the system, does it:
Return to the steady state (Stable) ? Or drift away over time (Unstable)?
Example of a system with stable steady states: bacteriophage lambda lysogenic maintenance circuits,

drosophila segment polarity network, etc.

A
Linear system, globally asymptotic stable iff Re(A(A4)) < 0.

Eigenvalues of A: 4, = —f < 0, 4, = —y < 0. Thus, the system is always stable.



Gene 1 Gene 2

Stability of Promoter-Only GRNs e R
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Linear system, we can write it as X = AX, X = (sg :

The linear system x = Ax is globally asymptotic stable iff Re(A1(4)) < O.

Lemma 1: Suppose the condition of Theorem 1 holds s.t. a steady state exists.

When there is no inhibitor, 1.e., Wg, = 0 for all genes, the networked dynamics 1s stable

if, g > Bg > a Wh,forallg.
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General Case: Understanding Stability via Lyapunov Functions

Goal: make conclusions about trajectories of a system X = f(x) (e.g., globally asymptotically stable ).

without finding the trajectories (i.e., solving the differential equations).

Consider a nonlinear system X = f(x).

V(x,y) = (x% +y?)/2

A Lyapunov global asymptotic stability theorem:

Suppose there exists a function V: R® = R that is positive definite,
i.e, V(x) = 0forallx, V(x) = 0iff x = X,
and V(x) — oo whenever ||x|| — oo.

In addition, V(x) < 0 for all x # X, , and V(x,) = 0.

Then, every trajectory of X = f(x) converges to X, as t - oo,

We call V a Lyapunov function, which can be thought of as a generalized energy function.



Stability of Network RNA Velocity

Theorem 2: Suppose the condition of Theorem 1 holds s.t. a steady state exists.

Consider a positive semi-definite function as a candidate Lyapunov function,
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Then, V(u, s) is a Lyapunov function, and (u*, s*) is globally asymptotically stable.



Targeted Drug Intervention

Inhibitor
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Formulate the drug intervention as a minimum time optimal control problem:

T
min/ 1 dt
z4 0

s.t. . = aR°(24,s) — Bu,
s = Pu — s,
w(0) =up, s(0) =so, s(T)= sy,
29(t) € U, Vvt € [0,T].
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Exemplary Drug Intervention (I)
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Exemplary Drug Intervention (II) @-—*-@—>» l
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Future Directions (in the full manuscript )

* Incorporate cell-to-cell interaction via spatial transcriptomics
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* Examine how drug interventions may affect safety liability genes and design targeted
drug intervention as controlled system.
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